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NOTICE 

This report was prepared as an account of Government sponsored 

work. Neither the United States, nor the National Aeronautics 

and Space Administration (NASA), nor any person acting on behalf 

of NASA: 

A . )  Makes any warranty or representation, expressed or 

implied, with respect t o  the accuracy, completeness, or 

usefulness of the information contained i n  this report, 

or that the use of any information, apparatus, method, 

or process disclosed i n  th i s  report may not infringe 

privately owned rights; o r  

Assumes any l i a b i l i t i e s  with respect t o  the use of oa? for  

damages resulting from the use of any information, ap- 

paratus, method or process disclosed i n  this report. 

B.) 

As used above, "person acting on behalf of NASA" includes any 

employee or contractor of NASA, or employee of such contractor, 

t o  the extent that such employee o r  contractor of NASA, or em- 

ployee of such contractor prepares, disseminates, or provides 

access t o ,  any information pursuant t o  h is  employment or contract 

w i t h  NASA, or his employment with such contractor. 
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ABSTRACTS 

SECTION I. TEIE MECHANISM OF VARIOUS TYPES OF HIGH RATE ELECTRODES 

The shape of the meniscus in  the model porous electrode and the 

contact angle have been determined by two methods: 

reflection technique. 

f i n i t e  contact angle model, taking into account resistance, diffusion 

and activation control have been obtained. The calculated current- 

potential relations were in  extremely good agreement w i t h  experimental 

resul ts  obtained for  H2 ionization and O2 reduction reactions. 

interferometry and 

flumericctl solutions of equations set up for  a 

The electrochemical behavior i n  the model pore is extremely 

sensitive t o  the oontact angle. 

small parts  of the meniscus indicates the possibil i ty of ut i l iz ing 

extremely small auounts of catalyst t o  obtain relatively high power 

from a porous electrode. 

Very high local  current density over 

V 



SECTION 11. THE MECHANISM OF ELECltROCATALYSZS 

The catalytic act ivi ty  of simple electrode reactions (H,/H+; 

3+ Fe2+/Fe 

evolution reaction on a series of P t - N i ,  and for  Fe3/Fe2+ on Au-Pd 

alloys. In the latter; exchqa  current denfiity first. increnn~g ana 

then decreases w i t h  increasing at 5 of Au i n  alloys. 

occur at the point where d-band i s  expected t o  be f i l l ed .  

) i s  studied on a number of alloys. Data are  given for  hydrogen 

Maximum appears t o  

v i  



111. THE ELECTRICAL D0UBI;E LAYEX AT THE SOLID-SOLUTION DiTEWACE 

Capacitance behavior of gold electrodes i n  di lute  solutions 

w a s  studied under high purity conditions. 

potential curve i n  a lom3 N HClO4 solution was found t o  be at + 170 mv 
The minimum i n  the capacity- 

/N \-. .-.-. ET R 1 , I It yr,a &ser~r;i khat +.he pt~~tjd of tj5_'! ne% 

vary with pJi in acidic solutions. A t  pH 9 the potential of zero charge 

was found t o  be + 10 mv (N.H.E.). Although a slight variation in  

capacitance w i t h  frequency was found, the position of potential of 

zero charge w a s  independent of frequency. 

v i i  



SECTEON IV. ADSORPTION IN THE DOUBLZ LAYER WITH 

SPECIAL RFIFEFiENCE TO THERMAL EFFECTS 

Potential sweep method of measuring adsorption was utilized to 

obtain data on adsorption of ethylene and benzene as a function of 

potential. 

tracer method. 

is under way. 

Results have been compared with those obtained by radio- 

Analysis of the agreements and discrepancies observed 

v i i i  



Section V. Electrode Kinetic Aspects of 

Electrochemical Energy Conversion 

Expressions for  the current distribution and overpotential as a 

function of current density are derived for  the simple pore model of the 

porous electrode assuming all forms of polarization and for  the cases of 

activation-concentration and of  activation-ohmic polarization. 

shown that the one dimensional treatment is applicable up t o  one-tenth 

of the limiting current f o r  the case of activation-concentration polari- 

zation. 

diffusion coefficient solubili ty of reactant gas in  electrolyte, exchange 

current density, specific conductance of electrolyte) it i s  shown that  

the case of all forms of polarization reduces t o  that of activation- 

concentration polarization. 

shows the interesting result that current densities can be increased by 

a factor of 10 times i f  concentration polarization is  eliminated, for 

exanrple,by using very soluble fuels or by circulating the electrolyte 

saturated with the reactant through the porous electrode. 

It i s  

By using the numerical values of the variousparameter (e.g., 

The case of activation-ohmic polarization 

3 
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SECTION I: THE MECHANISM OF VARIOUS TYPES OF HIGH RATE EIJXTRODES 

The object of the investigation of the model porous electrode 

during the report period was twofold: 

1. Obtain current-potentia3 characteristics for  a reaction 

wirh e u ~ h m n  CrrrrranC p~ck_ ~~;~~~ t k , ~  tk,& u 
-2- 

2. 

These obJectives were investigated as follows: 

1. 

Mapping of the interface by means of optical methods. 

Oxygen reduction was studied under purified conditions. 

Although the exchange current is  some 10 7 times less  than that of H2, 

the general characteristic, namely the l inear i ty  of cunrent-potential 

relations i s  the same (see Figs. 1 and la, fu l l  l ines) 

dV/d depends on the height of the meniscus in the s l o t ,  increasing 

with increase of path length. 

The slope 

2. The optical methods were used: (a) reflection study; 

(b) interferometry. 

The interferometric technique 

Inkr. hn+;nnll,r +la+ or,*9-na h9 +kh -lAn+llhar. nnrrrr:aro e-.. -l--.. wpu~--&,y A I U U  Y u . L S * b G  Y I  UUG GAGbUAUUG & A U V A U G O  ULIC P A a L ' S  

f o r  interference ( th i s  corresponds t o  the reference plane in the 

interferometer) . The liquid-gas interfaee is  the other plane. Direct- 

ing NaD l i gh t  at th i s  interface, an interference pattern is  set up, 

with darrk fringes at positions where 2 nd = m 4, (d = thickness of 

meniscus, /p = wave-length; m = 0, 1, 2, 3 . .  . .; n - refractive index 

5 1.31). 

The interference patterns a t  the meniscus were photographed 
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w i t h  50 X magnification. 

The reflection technique 

This i s  i l lustrated i n  Figure 2. The l ight  from a point source 

is directed at the interface and renected into the microscope directed 

at 90' t o  the Pt surface. 

curvetue of meniscus can be seen only i f  the angle of iocidence CS = 0'; 

at larger angles (position 1, Fig. 2) no reflection i s  seen i n  the 

microscope. 

reflected beam first appears in  the microscope, indicating the beginning 

of the detectable curvature of the meniscus. Measuring the angle 2 8 

by reflection of the beam from several points on the meniscus curvature, 

i ts shape was determined over 125p of the meniscus height. 

Thus, beams reflectted from points above the 

Raising the light source a point i s  reached, where the 

Accuracy of the determination of 9 

The microscope is placed on the cathetometer stand a t  the 

distance of 10 cm from the Pt surface. 

tan 2 8 = h/10. 

- + lo'* cm. Another source of  error is the angle of the acceptance of 

the microscope, which is 0.035'. 

The angle 8 is given by 

The height, h, can be measured w i t h  an accuracy of 

Thus the accuracy of the measurement i s  

A tan 2 8 = - + + t an  0.025) = 2 0.0014 

which corresponds t o  AQ = - + 0.04'. 
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Results and Discussion 

1. The contact angle 

Approaching the meniscus from above, the angle 8 is continuously 

0, until abruptly its value jumps to 

izc=.aaoes. 

indicates that there is a discontinuity at the interface, and that the 

meniscus ends with a finite contact angle. 

1,5O, and then continuously 

Iii -F&W or̂  the above accuracy or 8 measurement - 0.04%, this 
- Y- - -- 

The value of this angle depends on polaxization. 

This discontinuity reveals itself also in interferometric 

measurements by the abrupt black edge of the meniscus contrasting with 

the bright reflection from the surface above (see Fig .  3 )*  The above 

picture corresponds to a wedge type film with the dark fringes at the 

apex (m = 0) and at thickness d = mi/2n. 

Meniscus shape 

This was mapped on the basis of the values of 8 found by reflec- 

tion technique, and independently, on the basis of the thickness of 

~e ueniscus edge obtained by interferometric technique. Both data 

agree remarkably well (see Fig. k ) ,  as may be seen by cornpaxison of 

position of fringes observed and calculated from results obtained by 

reflection. 

.LL - ... 

The mapped curvature fits t o  a cubic equation with a very small 
coefficient at  x 3 (x - distance from top of meniscus). 



Current-potential relation 

A program has been set up f o r  use with ''QUIKTRAN" and/or "FOWIRAN", 

f o r  the solution of the differential  equations for  the " f in i t e  angle" 

meniscus. Provision has been made fo r  studying the effects of a U  

pParn&Pyg f n _ C l i i A i n a  &=te +.he =e=igc;s2 pnc r - n m h + y ? P f . j ~ ~  & 

resistance, activation and diffusional control. A quadratic equation 

was used t o  describe the shape of meniscus. The f i t  was good, as might 
be expected by the s m a l l  coefficient at x 3 . 

The numerical solution obtained i s  in  reasonably good agreement 

with experimental resul ts  (see Figs. 1, l a )  not only i n  that the current- 

potential relation i s  l inear,  but i n  the absolute values of currents 

calculated and observed. 

Conclusions 

1. The theoretical treatment of the f i n i t e  angle meniscus 

model assumed on the basis of optical experiments yields current- 

potential  relationship, as well as the absolute values of current in  a 

m s m n r b o k l r r  emna-m--+ v . 4  C k  n-rrn<m,.-+ 
.h b - A - 4  eUUU GGAIAGUY W A V I I  GApGA - A L Y  

2. Local current densities obtainable i n  ce l l s  corresponding 

t o  this model ma;y be extremely high (exceeding 100 A cm'*). 

3. The extremely high local power densities explain completely 

the observed meniscus heating effect. 

4. A multiporous c e l l  satisfying the conditions o f  the f i n i t e  

angle meniscus could yield high gower with extremely s m a l l  amounts of 

catalyst  
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Future Work 

Further analysis of numerical resul ts  obtained from the computer 

w i l l  be made and dependence of current on io, 8 and potential will be 

established. 

An attempt w i l l  be made t o  construct a multiporous electrode 

corresponding t o  the investigated model. 

Captions t o  Figures 

Figure 1. Current vs voltage plot for  %. 
Figure la. Current vs voltage plot for  02. 

Figure 2. 

Figure 3. 

Figure 4. 

Geometry of the reflection technique. 

Schematic representation of interferometric results. 

Compltrison of resul ts  obtained by reflection and interferom- 

etry. 
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11. THE MECHANISM OF ELECTROCATALYSIS 

1. Introduction 

Electrocatalysis of %/H+ and Fe2+/Fe3+ reactions. 

Catalytic act ivi ty  of simple electrode reactions, tha t  of %/H+ 

and Fe2+/ke3+, has been studied on i i iffere~t electrcba ~ t ~ r i e s .  

here, data are reported on the %p reaction on 8 - N I  U o y  series, 

and of Fe2+/Fek on Au-Pd a l l o y s .  

Zj 

2. Experimental and Results 

A series of Pt-Ni. alloys were prepaxed by induction heating and 

then by prolonged (7 days) annealing at high ( 

t h i s  annealing a complete homogenization of' al loys should be achieved. 

Each alloy i n  the form of a bead was placed into Teflon holder as des- 

cribed i n  the previous report. Further treatment of the electrode, and 

the prepasation of the solution has also been described in the previous 

report.' Special care was taken t o  insure that the electrode treatment 

does not result  i n  separation of alloy components a t  the electrode 

surf ace. 

l lOO°C)  temperature. With 

In Fig. 1, the exchange current densities for %/H+ me plotted 

versus a t m i c  5 of N i  in Pt-Ni alloys. 

Activity changes with atomic composition of alloys, but there is a dis- 

t i n c t  discontinuity a t  about 50 a t  $. 

mechanism of the reaction on Ni (b = 2IIT/F) differs  from that  on P t  (RT/2F). 

As would be expected, Ni-rich a l loys  have the same Tafel slope (and presum- 

ably the mechanism) as Ni, and Pt-rich alloys as R. 

Data are for acid solution (1 N €$SO$. 

It should be noted that  the 
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3+ In Fig. 2, data on the redox Fe2+/Fe reaction are given. 

Exchange current densities on Au-Pd alloys (and Pt) are plotted versus 

l a t t i c e  parameters of alloys. A l ine  through experimental points is  

tentatively drawn. 

trend would be noticed. A characteristic of the plot is that  the 

Were the data plotted vs. at % of the alloys, similar 

~ c t $ ~ ~ ~ e i  2 ~ ~ s  &-% f=x cze z+c +e anether ~4 by dlnyina, -- - 

Further, there appears t o  be a maximum in  activity. 

tha t  the position of the maximum occurs at about 50 a t  % alloy, where it 

would be expected that the electronic structure of alloys changes (and 

the d-band of Pd becomes f i l l ed) .  

appear on electrode material. is further shown in Table I i n  which data 

fo r  BbC, T I C  and TaC are given. For Table I pleczsc see page 7a. 

It is  interesting 

That exchange current density does 

3. Discussion 

2 Results on P t - N i  are i n  fact similar t o  those on Pd-Ni alloys. 

Thus, in  the l a t t e r  case (Fig. 3) ,  l inear i ty  exists over the whole range 

of l a t t i c e  parameters (nearly the same scale as a t  % of alloy, and i n  

the former case over the end member only. The abrupt change in slope 

GCCik’S &$j &O\rt 52 &% $. Tk,;c & w e  be tQ ch_nngp in 

mechanism of the reaction a t  t h i s  alloy composition. 

The question m a y  be asked what structural  or  electronic proper- 

ties of alloy is this l inear i ty  due to? 

affect  exponential term in  the overall ra te  equation. 

the  analysis it appears that the observed change is  due t o  the change 

i n  the  heat of H-adsorption. 

F i r s t  of all, alloying must 

A t  t h i s  stage of 

This would be possible if  the bond strength 
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El cctrodes io (amP/ur?) 
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between metal atoms in  the alloy changes l inearly w i t h  the alloying. 

In  the case of two similarr atoms, as N i  and Pd, t h i s  l ineas change 

may be expected. 

can be accounted for  with the difference i n  heats of adsorption on 

N i  and Pd electrodes, as experimentally observed. 

The magnitude of change (2.5 decades frcm N i  t o  Pd) 

3 Change i n  the act ivi ty  

D+ R t 4  r'l-l-rr ..*...a?----- .La -------A--a m-- 
V I  A U-Aq* O I I W J  UW D - A c u . 4  U C  CLbbVUIIII~u 

Dependence of the activity of Fe2+/Fe3+ on the electrode material 

and on &Lloying.is not expected i n  simple redox reabtions, unless some 

interaction of reacting cations and the electrode existed. 

worthy that the maximum in  activity occurs at the point where the 

electronic structure of alloys i s  expected t o  change. 

indicates that  some electronic factors are  involved i n  the catalysis of 

the Fe2+/Fe3 reaction. Further analysis i s  i n  progress. 

It is note- 

This strongly 

4. Future Work 

Further work will include more with non-noble metal a l loys  and 

special compounds such as bronzes and oxide electrodes. 

References: 

1. 

2, Ibid. 

3,  

Quarterly NASA Report, No. 6, 1 July 1965 t o  September 1965 

Bond, Catalysis by Metal, Academic Press (1953) . 



i 

. .  

+ 
I 

I I I I 1 
8 8 0 CD 8 8 



i 
I -  
I 
I -  
! 
1 : 
i 
t 

f 

i 

- 2  

n 
6 J  
E 

a 
0 

c1, 

< 
U 

.- 
- 0 -3 

-4 
3.8 3.9 4.0 4. I 

L a tt i ce Pam meters [ n3 
2+ 3+ 

FIG.2 
Exchange current density for Fe IFe reaction vs lattice 

\ 
Pd.- . \ 

\ 
\ 
\ 
\ 

I) \ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

&A" 

p a t o m e t e s  of Pd- Au alloys. Pt is included. 



c 
0 

I .- z 

c1 

c 
0 

rl) 
$ 

h 
c 
b 

\ N 



9 

111. THE ELECTRICAL DOUBLE LAYER AT THE SOLID-SOLUTION IWTERFACE 

I n  the quarterly report period capacitance behavior of gold 

electrodes was studied as a function of electrode potential aad fre- 

quency. 

1. Exp erimental 

1 
The apparatus used is  described i n  a previous report . It 

consisted of a transformer r a t io  arm bridge, 302A Hewlett-Packmd wave 

analyzer and a Tektronix oscilloscope. 

The electrode material used was Johnson Matthew 'Grade 1' gold. 

The gold wire (7 cm) was spot-welded t o  a thin platinum f o i l  (1 cm x 

0.2 cm) t o  the other end of which a snall length (2 cm) of p l a t i a u  

wire was attacfied. 

t o  a ~ 3 0 "  piece of strubore' tubing and was sealed with pyrex giass 

under vacuum. 

a f t e r  being heated strongly. 

not adopted, the wire was observed t o  melt inside the thin walled glass 

The gold wire was put i n  a small capillcry attac3ed 

The platinum f o i l  formed a vacuum-tight s e a l  with glass 

If vacuum sealing of gold t o  glass w a s  

non- l l lnn- r  W L -  -lac-- nnn411orr-r r.mo k w n t s n  nf9 ct tfie r eq~ i s i t e  psitier?. r a p & u a r y .  &UG Cjr-uu b a ' p - c u c u y  n w o  "LVLIb.L* "I& 

The glass tubing with the wire was clemed w i t h  ispropyl aJcohol, 

d i s t i l l ed  water and was kept i n  HN03-H,-p04 for  several hours. 

rinsed with d i s t i l l ed  water and conductivity water several times. 

The wire was melted into a f ine spherical ball with an oxy-hydrogen 

flame. 

t o  f i t  on top of the conventional electrolytic cel l .  

heated i n  argon for  1/2 - 1 hour t o  remove the mosituze, and in hydrogen 

It was 

The electrode was inmediately transferred into a f'urnace made 

The electrode was 
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for  10 - 20 minutes at 35OoC and in argon a t  about 400°C for  another 

hour or so. The electrode was cooled i n  the same atmosphere and slicl 

directly (without exposing t o  outside enviroment) into the main con- 

partment. 

which served as the counter electrode. 

It was surrounded by a platinized platinum sphericd Sasket 

The solutions were prepared from analyzed reagent grade per- 

chloric acid a d  sodium hydroxide and recrys td l ized  sodium perchloreate 

and redis t i l led coaductivity water which was d i s t i l l ed  directly irho 

the pre-electrolysis c e l l  under purified nitrogen atmosphere. 

were pre-electrolyzed between large platinized platinum gauze (150 cm2 ges) 

electrodes, for  a t  l eas t  24 hours and maximum of 72 hours. 

Solutiox3 

2. Results 

Figure 1 shows the typical variation of capacitacce with poten- 

t i a l  on gold in  

capacitance, if the potential of the electrode i s  not made more than 

200 mv positive or negative t o  the po ten t id  of zero charge. If the 

electrode is  taken t o  1000 mv (r.h.e.) and %he readings taken while 

rnakiq the potential more anodic and then coming back i n  potential, 

considerable hysteresis i s  seen t o  occur (Pig. 2).  From Fig. 3, i': cc;n 

be observedthat giving an anodic and cathodic pulse does not change the 

position of potential of zero charge. 

N perchloric acid. There i s  no hysteres3.s in  

Fig, 4 shows the effect of frequency on capacitance as a func- 

t ion  of potential. 

It can be seen that  the capacitance does not change considerably 
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as a function of frequency. 

of frequency. The s l ight  dependence of capacitance on frequency be 

explained by the imperfections on the metal. surface. 

The potential of zero charge is  independent 

It was observed that  the potential of zero charge i n  acidic 

solutions did not depend on pFI. 

unable t o  obtain capacitance curves similar t o  those in acidic snlu- 

t ions with same ionic strength. 

i.e. no addition of sodium perchlorate and very dilute sodium hydroxide 

solutions (pH 'v 9) gave similar curves. 

was found t o  be about + 10 mv (N.H.E.) as compared t o  3- 170 rn (N.H.E.) 

at pH 3.0, 

OH- adsorption and reduction of ionic strength of the solutions. 

But i n  alkaline solutions we ware 

Whereas reducing the ionic strength, 

The potential of zero charge 

The sh i f t  of p.z.c, could be due t o  a combined effect  of 

3. Future Work 

Potential of zero charge on s i lver  and nickel w i l l  be skudicd. 

Also, apparatus w i l l  be designed and bu i l t  for  the measurement of the 

potential  of zero charge by a third independent method. 
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Iv. ADSORPIION IN THE DOUBLE LAYER WDH SPECIFIC REFEXUWCE 

TO THERMAL EFFECTS - 
1. Izrtiroduction 

In  view of the importance of adsorption measurements fo r  deter- 

mimtion of mechanism and understanding o r  eiectrocatalysis i n  fuel 

c e l l  systems, the methods of adsorption measurements must be c r i t i ca l ly  

evaluated. In  recent years the potential sweep method gained a great 

deal of attention, since it i s  a relatively quick and easy way of ob- 

taining extremely well reproducible current-potential transients. 

interpretation of these transients, however, raises serious doubts. 

The 
1 

1 
In  order t o  check the validity of implicit assumptions contained 

i n  the method, a comparison was made of the results obtained by a 

previously developed radioactive 

sweep, i n  two systems: 

and by the potential 

benzene and ethylene dissolved in 1 N  H SO 
2 4’ 

2. Experimental 

2.1 Potential-sweep Method 

Platinized P t  bead serves as the potentiostated anode. 

surface mea i s  derived from capacity measurements i n  the double laJrer 

region in blank solution (saturated with N2), assuming a capacity of 

20)L.F anB2. The electrode is  prepared before each potentiaJ. sweep in 

the way similar t o  that proposed by Niedrach, 

fo r  

Its 

4 i.e. it is potentiostated 

(A) 10 secs at 1.7 V 



(B) 

(C) 

20 secs a t  1.2 V 

15 secs at 0.06 V 

(A) - adsorption step i n  which the electrode i s  held for  the desired 

amount of time (t,) at the adsorption potential (V,). After the period 

tA a potential sweep is  applied with a constant ra te  dY/dt, reversing 

the direction at the potential where O2 evolution starbs ( AJ 1.6 - 1.7 V) 

and returning back t o  VeA {see Fig. 1 Curve 1). The sane potential 

sweep, under identical conditions is previously carried out i n  a blank 

solution (Fig. 1 Curve 2), The difference i n  the axeas of the anodic 

current (i.e. above the 0 l i ne  inF ig .  1) is then assumed t o  be the 

amount of coulombs used t o  burn off the adsorbed fuel. 

2.2 Radiotracer Method 

This was described i n  detai l  in  Report No. 1 (1 Octo 1962 - 
31 March 196.3). 

3.  Results 

3.1 Determination of the useful sweep rate 

Preliminary measurements with different sweep rates have been 

done, for both systems: 

(4 x 

Pig. 2 shows dependence of coul/cm on different sweep rates.  T h e  

plateau is achieved between 0.3 and 1 V/sec for  ethylene adsorption, 

and between 0.1 and 2 V/sec for benzene. 

used i n  subsequent experiments were 0.5 V/sec for  ethylene and 0.2 V/sec 

for benzene. 

with benzene (7 x loo6 M/l), and with ethylene 

M/l). The range between 0.1 and lo00 V/sec has been explored. 
2 

Therefore the sweep rates  
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Above the range of sweep rates in which the plateau is achieved, 

Q decreases becoming negative at high sweep rates (OV/b t > LOO V/sec) . 
Below this range higher values of Q obtained may be interpreted 

as readsorption of ethylene and benzene, respectively, during the sweep. 

3.2 Time dependence of adsorption 

This is shown in Fig. 3: curve 1, benzene; curve 2, ethylene. 

For both systems after tA = 5 min no significant change is shown by 

potential sweep method. 

in determination of potential dependence of adsorption. 

In view of these results tA = 5 min was used 

3.3 Potential dependence of adsorption 

Fig. 4 (circles) represents the results obtained in investigated 

potential region (from 100 - 800 mV); 
ethylene. 

both Figures (triangles) . 

for benzene and Fig .  5 for 

Results obtained by radiotracer measurements are shown in 

4. Discussion 

The preliminary results obtained here do not allow yet to draw 

conclusions as to the validity of the sweep method. 

differencesb the time dependence of adsorption as measured by the 

two methods: 

whereas the radiotracer method shows marked time dependence up to 30 min. 

The shape of the 8 - V curve in the case of ethylene is different (cf. 

Fig. 5). 

There are lasge 

potential sweep indicating steady state after 3 - 5 a, 

O n  the other hand the results of potential dependence of 



benzene adsorption (Fig.  4) agree remarkably well. 

the latter case is better than that expected when taking into account 

experimental errors. 

The agreement in 

5. Future Work 

Further and more detailed comparison will be made between both 

methods by obtaining the adsorption isotherms at a few potentials for 

benzene and ethylene. 

Adsorption of naphthalene and n-decylamine will be investigated 

by means of potential sweep method and compared with radiotracer results 

obtained previously. 596 
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CAPTIONS TO FIGURES 

Figure 1. 

Figure 2. 

Typical i - V transient --- blank; - with ethylene. 

Dependence of charge on sweep rate, fo r  ethylene in  1 N  H2S04 

at 3OoC. (Conc. of ethylene 4 x mole/l) . 
Dependence of adsorp.t;ion on time in  1 N  %SOL a t  V =: 0.3 V 

vs. N.H.E. Curve 1, la: benzene (7 x mole/l; t = 5OoC) 

Curve 2, 2a: ethylene (4 x mole/l; t = 3OoC) 

1,2 - potential sweep method; la, 2a - radiotracer method. 

Coverag;e-potential relatinnship for  benzene i n  1 N H2S04 

at 5OoC. Concentration of benzene 7 x mole/l. 

. . . potential. sweep method; 000 radiotracer method. 

Surface excess-potential relationship for  ethylene in  

1 N $SO4 at 3OoC. 

... potential sweep method; DAD radiotracer method. 

Figure 3. - .  

Figure 4. 

Figure 5. 

Concentration of ethylene 4 x rnole/l. 
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V. ELECTRODE KINETIC ASPECTS @? ELECTROCHEMICAL ENERGY CONVERSION 

THE KINETICS OF REACTIONS AT POROUS ELECTRODES 

This work was carried out in collaboration w i t h  D r .  H. Hurwitz 

A. The Simple Pore Model 

1. General. 

The structures of porous electrodes are quite complex. 

purpose of simplifying the mathematical treatment, the electrodes are 

assumed t o  consist of uniform parallel  cylindrical pores of some average 

radius. Thus, one can analyze the current-potential relation in a 

single pore and then* rad i i  from the number of pores per cm of cross 

section of the porous electrode, obtain the current density-overpotential 

re la t ion of the reaction a t  the porous electrode. 

For the 

2 

Another useful relationship is  the current distribution within 

the porous electrode. 

pore. 

This i s  obtained fromthe aralysis of the single 

For th i s  purpose, two models -- the simple pore model and the 

th in  film model -- axe chosen.(Fig. 17). These models represent i n  a 

way the extreme types of the modes of operations which correspoad t o  

non-wetting and wetting electrodes. 

in the  present report. 

The simple pore model is  analyzed 

2. Reaction Scheme 

A reaction is  considered t o  occur i n  the following consecutive 

steps: 
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Rsol,b -+ Rsol,e 

- 
Rads - 2 s  + eo (4) 

R represents a gaseous reactant and P the products. The suFfices b 

and e stand for the gas-electrolyte boundary (vide models below) and 

the electrode-electrolyte interface. 

represents the activation controlled step at the electrode. A l l  steps 

grouped together under equation (5) are assumed t o  be fast .  As examples 

of t h i s  type of reaction one maJr consider the hydrogen dissolution 

reaction or oxidation of saturated hydrocarbons. 

cathodic reaction i s  that of oxygen reduction. 

It is assumed that equation (4) 

A corresponding 

3. Description I_ of simple pore model 

A single pore of the electrode is  represented in Fig. 1. A 

cylindrical coordinate syatem i s  used. 

tha t  the meniscus at the gas-electrolyte interface at z = 0 is  flat. 

The reactant gas diffuses through the pore t o  the gas-electrolyte inter-  

face a t  z = 0, where it dissolves i n  the electrolyte and the dissolved 

gas diffuses through the electrolyte t o  the various electrocatalytic 

sites along the pore a t  which the reaction occurs. In the following 

treatment, it i s  assumed that the f i r s t  and second steps of diffusion 

For simplicity, it is assumed 



of reactant gas through the electrolyte free part  of the pore (z < 0) 

and of dissolution of the gas at the  gas-electrolyte interface are fast. 

The other steps of the reaction are represented by equations (1) t o  (5). 

3. Theoretical analysis of model: 

( i )  Case where a-U. forms o f  polarization are talran into account 

A rigorous analysis of the current-potential relation and current 

distribution i n  a single pore is a two-dimensional problem (due t o  

cylindrical symmetry). 

dimensional problem taking into account all forms of polarization. Thus, 

the present analysis was carried out considering a concentration gradient 

of reactant in one direction -- the axial  direction of the pore. 

assumption of a unidirectional concentration gradient i s  valid under 

the conditions tbt the l o c a l  activation controlled current density is 

less than the limiting current density due t o  radial diffusion. 

mathematically t h i s  condition is 

However, it i s  not possible t o  solve this  two- 

The 

Expressed 

Further, the one-dimensional model is  valid for  currents up t o  about 1% 

of the l imi t ing  current density in the pore (the val idi ty  of this assump- 

t ion  is  confirmed by considering the two-dimensional treatment for  the 

case of activation and coneentration polasization, detai ls  of which w i l l  

appear i n  a forthcoming publication). 

The basic equations f o r  the one-dimensional model are obtained 

by considering a cylindrical element of thickness dz (Fig. 1). 
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The current generated i n  t h i s  element (dI) is  given by 

(7) 
where i i s  the exchange current density for  the reaction, cz i s  the 

concentration at the electrode-electrolyte interface between z = z and 

z = z + dz and 7 is the overpotentid at z = Z. 

0 

The ohmic drop i n  the element dz i s  given by 

(8) 
2 d 7  = I ( a Z / f  sy 4 

where ti i s  the specific conductivity of the electrolyte and I is the 

t o t a l  current generated from z = 0 t o  z = z. 

The third important relation i s  obtained by using the stationary 

state hypothesis for  the reactant R i n  the element dz. Thus, 

( 9 )  
2 2 2 dI/dz = r r 2  DnF (d cZ/dz ) 

where D i s  the diffusion coefficient of the reactant i n  the electrolyte. 

The boundary conditions f o r  t h i s  problem are 

and 

c = co at z = O  
qr2 2 DnF(3 c /d  z) = - It at  z = 0 

dc/dz = 0 at z = 1 

The derivation of the solution of the different ia l  equations (7) 

t o  (9) w i t h  boundary conditions (10) t o  (14) i s  rather involved. The 
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current, I, is expressed as a functd n of the distance by the relation 

where 

YO = ?$/2ET (p  assumed to be half) (18) 

x = z//y 

4, and 4, are the values of o( evaluated at x = 0 and x = 1 respect- 

ively. 

Use of the possible numerical values of the constants of the 

above equations in equations (15) and (22) shows that 6( is always large. 

Under these conditions, the equation for I reduces to 

This limiting case corresponds to one of only activation and coneentration 
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polarization i n  the pore. 

Two limiting cases may be coqsidered: when K is  s m a l l ,  

tanh K* K (26) 

s ~ ~ ~ K G K  (27) 

sM.1 K ( l  - X) G K ( 1  - X) (28) 

Thus, equations (23) and (24) become 

I& = x (29) 

and = (T(r2DnFc "K2,/q 1 - exp(-2Y 0 13 (30) 

Using 8 as given by equations (16) t o  (18) and (25) in (30), it follows 

that  the Tafel slope is 2RT.R and from (29) tha t  there is  a uniform 

current 

low io, 

distribution in the pore. 

high M c 0  and low 

The second case is when K is large. 

This case corresponds t o  one of 

'10. 

Under these conditions, 

tanh K A 1  (31) 

(32) 

(33) 

si& K /t 1/2 exp K 

sinh K(l - x) -fl- 1/2 exp K (1 - x) 
Using equations (31) t o  (33) in equations (23) and (24) 

In  this case, the Tafel slope i s  4m/F and i s  obtained for  the case 

when io is high, DnFco is low or  To is  high, 
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However, i n  both cases, the exchange current density influences 

the t o t a l  current generated i n  the pore. In the first case, It varies 

l inear ly  w i t h  io whereas i n  the second, varies l inearly with (io) 112 

In  the former case, the normal Tafel slope as for  a planar electrode 

is  obtained, whereas in the l a t t e r ,  twice the normal Tafel is obtained. 

Thus, it is  quite clear that the use or porous eiec-brories aiurie GUee 

not eliminate the problem of electrocatalysis. 

Figure 3 shows the overpotential-current relation in a sin@? 

pore for  two values of io (lo-=, lo-' and 

sane values of DnFcO,  the effect of the exchange current density on the 

relations i s  clearly seen. 

of the parameter K on the current distribution within the electrode. 

Plots i n  terms of the parameter K are quite convenient since f r o m  a few 

plots  one may predict the nature of the curves for  variations 

amp anw2). U s i n g  the 

Fig. 3 i l lus t ra tes  the effect of variation 

i n  io, 
0 yo, D, c and r. 

( i i )  Case where only activation and concentration polarization 

are present 

As seen f romthe  preceding section, for  the most probable values 

of DnFcO, the ohmic drop i n  the pore is insignificant. Thus, from the 

general case of a l l  forms of polarization, equations were obtained for  

the limiting case of activation and concentration polarization using a 

one-dimensional treatment. 

treatment f o r  the case of only activation and concentration polarization 

from malogous problems in heat transfer. 

and two-dimensional treatments was made and it was found that for high 

It i s  possible t o  carry out a two-dimensional 

A comparison of the one 
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of the current, only the two-dimensional treatment is valid. 

( i i i )  Case where only activation and ohmic polarization are_ 

present 

This case i s  applicable when the product DnFco is  quite high, 

e.g., C12 in aqueous solution o r  if  l iquid fuels soluble in the elec- 

t rolyte  such as methanol are used. Another example is if the reactant 

saturated electrolyte i s  circulated through the pore at a rate such that 

there is  no concentration gradient in the pore. 

necessary f o r  solving this  problem are equations (7) (With ce = c0) 

and (8). Two cases may be distinguished. When yo < 0.1 V, 

The basic equations 

When '1 > 0.1 V, the ra te  of the reverse step is so nmnll in comparison 

with the forward r a t e  that it maybe neglected. Under these conditions 

and It = [(4RT/,..(F)~,r~]A tan A 



where (43) 

The relations (41) and (42) present i n  a simplified manner the 

effect of variation of the parameters io, r2, K, 1, y o  by considering 

only changes i n  the parameter A. A has t o  be less  than 77-/2; when A = 

fjr/2, the current at z = ,f is  CO. Figures 4 and 5 show the variation 

of I=/$ and of (7 - 70) vs z for different values of one of the above 

parameters, keeping the others constant. For an i, of 10 -3 amp cm , 
with y = 1 ohm-' an-' and r2 = 10 

corresponding t o  A = 1.55 is  observed only a t  

-2 

-4 cm, and 1 = 10-1 cm, the behavior 

= 0.4 V. Using the 71 
same values of )11r2 and 1, but io = 10 -6 amp cm'2, the same current 

= 0.74 V and with i = 10 -9 amp cm -2 
71 0 

distribution is obtained f o r  

at 11. = 1.09 V. 

Using t h i s  parameter A, the current-potential relation i n  the 

pore may also be easily obtained. Such plots f o r  io = log6 a d  low9 

amp cm 

of the substrate on the current obtainable from a porous electrode. 

It is interesting t o  note that the current densities observed in this  

-2 are shown in Fig. 6 i l lustrat ing the electrocatalytic effect  

case are many orders of magnitude (about 10 3 times) than f o r  the corres- 

ponding case of activation and concentration polarization. 
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Captions to Figures 

1. The simple pore and thin film models. 

2. Overpotential-current density relation for case where all forms of 

polarization are considered. Assumed parameters: D@c0 - lom7 
-1 cm-l. , o - i =: io -12 amp a m 2 ;  a- 10-9 amp CIn-l, = 1 ohm 

amp cm2; A - 10-6 amp osn -2 . 0 

3. Current distribGtion relaticns for case where all forms of polmi- 

zation &re considered. Values of DnFc' and 

(a) 

as in (2) . 
Uniform current distribution in the pore, e.g., with i = 

0 

amp and 37 = 0.1 V. 
-2 (b) io = amp cm and 7 = 0.1 V 

(c) io P 10 -12 amp cmm2 and 7 = 0.65 V 

or io = amp cm-2 and 9 = 0.01 V 

(d) i = 10-9 amp cm-2 and 7 = 0.65 V. 

Current distribution relations as a function of parameter A for 
0 

4. 

case of activation and ohmic polarization. 

PII 0.50; 9 0.60; .B 0.70; 6 0.80; V 0.90; 0 1.00; 0 1.10; 0 1.20; 

A values are for 

V 1.30; X 1.40; + 1-45; 0 1.50; a - 1.55. 
5 .  Potential distribution relations as a f'unction of parameter A for 

case of activation and ohmic polarization. Synibols for A values 

same as for figure 4. 

Overpotential-current density relation for case of activation and 6. 
ohmic polarization. K = 1 ob-' cm -1 ; (a) io = 10-9 amp cm-*, 

-6 -2 (b) io = 10 amp cm 
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Office, DDRgcE: USW & BSS 
The Pentagon 
Washington 25, D. C. 
Attn: G. B. Wweham 

Mr. Kenneth B. Higbie 
S t a f f  Metallurgist 
Office, Director of Metallurgy Reseasch 
Bureau of Mines 
Interiof Building 
Washington, D. C., 20240 

Ins t i tu te  f o r  Defense Analyses 
Research & Engineering Support Division 
400 Army-Navy Drive 
Arlington, Virginia 22202 
Attn: D r .  George C. Szego/R. Hamilton 
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Cell Reports (cont 'd) 

Power Information Center 
University of Pennsylvania 
Moore School Building 
200 South 33rd Street 
Philadelphia 4, Pennsylvania 

W e ? ,  Tnz1& S+?+.ion; CFSTI 
Sills Building 
5285 Port R o y a l  Road 
Springfield, Virginia, 22151 

PRIVATE INDUSTRY 

Alfred University 
Alfred, New York 
Attn: Professor T. J. Gray 

Allis-ChEtlmers Mfg. co. 
1100 S. 70th Street 
Milwaukee 1, Wiscmsin 
Attn: Dr. W. Mitchell, Jr. 

Allison Division of General Motors 
Indianagolis 6, Indiana 
Attn: Dr. Robert E. Henderson 

American Cyanamid Company 
inqv T T  ui-i.. c+.~,,+ r > J I  i v .  r u a A U  U C I S Z ~ Y  

Stamford, Connecticut 
Attn: Dr. R. G. Haldeman 

American Machine & F0~mdr.y 
689 Hope Street 
Springdale, Connecticut 
Attn: Dr. L. H, Shaffer 

Research & Developent Division 
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Astropower, Inc. 
2968 Randolph Avenue 
Costa Mesa, California 
Attn: D r .  C a r l  Berger 

Battelle Memorial Inst i tute  

Attn: Dr. C. L. Faust 
c-,>*s, 1, pl3Q 

Bell Telephone Laboratories, Inc. 
Murray Hill, New Jersey 
Attn: M r .  U. B. Thomas 

Clevite Corporation 
Mechanical Research Division 
540 East 105 t h  Street 
Cleveland, Ohio 
Attn: A. D. Schwope 

Electrochimica Corp. 
1140 O'Brien Drive 
Menlo Pwk, California 
Attn: D r .  Morris Eisenberg 

Electro-Optical Systems, Inc. 
300 North Halstead Street 
Pasadena, California 
Attn: E. Findl  

Engelhard Industries, Inc. 
497 DeLancy Street  
New=& 5 ,  New Jersey 
Attn: D r .  J. G. Cohn 

Esso Research & Engineering Company 
Products Research Division 

Linden, New Jersey 
Attn: D r .  C a r l  Heath 
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C e l l  Reports (contd.) 

The Franklin Inst i tute  
Philadelphia, Pennsylvania 
Attn: M r .  Robert Goodman 

General Electric Company 
Direct Energy Conversion Operations 
Lynn, Massachusetts 
Attn: D r .  E. Glazier 

Garrett Corp. 
1625 Eye St., N. W. 
Washington 6, D. C. 
Attn: George R. Shepherd 

General Electric Company 
Rese a,r ch Labor at ory 
Schenectady, New York 
Attn: D r .  H. Liebhafsky 

General Electric Capany 
Missile and Space Division (Room Ml33S) 
P. 0. Box 8555 
Philadelphia 1, Pennsylvania 
Attn: L. Chasen 

General Motors Corp. 
Box T 
Sut.n_ Barbara: California 
Attn: D r .  C. R. Russell 

Globe-Union, Inc. 
Milwaukee 1, Wiscmsin 
Attn: D r ,  C. K. Morehouse 

D r .  Joseph S. Smatko 
General Motors 
Defense Reseuch Laboratories 
P. 0. Box T 
Santa  Barbaa, California, 93102 



36 

Cell Reports (cont 'd. ) 

John Hopkins University 
Applied Physics Laboratory 
8621 Georgia Avenue 
Silver Springs , Maryland 
Attn: W. A. Tynan 

Leesona Moos Labor at or i e s  
Lake Success Park 
Community Drive 
Great Neck, New York 
Attn: D r .  A. Moos 

McDonneU. Aircreft Corporation 
Attn: Project Gemini Office 
P. 0. Box 516 
S t ,  Lose 66, Missouri 

Monsanto Research Corporation 
Everette 49, Massachusetts 
Attn: D r .  J. 0. Smith 

North American Aviation Co. 
S & II, Division 
Downey, California 
Attn: D r ,  James Nash 

P r a t t  and Whitney Aircraft Division 
United Aircraft Corporation 
E a s t  Hartford 8, Connecticut 
Attn: Librarian 

Radio Corporation of America 
Astro Division 
Heightstown, New Jersey 
D r .  Seymour Winkler 

Radio Corporation of America 
8omerville, New Jersey 
Attn: D r .  G. Lozier 
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Speer Carbon Company 
Research And Development Laboratories 
Packard Road a t  47th Street 
Niagara Fal ls ,  New York 
Attn: D r .  L. M. Liggett 

;j;anr̂ "Id zebe&-& asti*;ta 
820 Mission Street  
So. Pasadena, California 
Attn: Dr. F r i t z  Kalhammer 

Thiokol Chemical Corporation 
Reaction Motors Division 
Denville, New Jersey 
Attn: D r .  D. J. Mann 

Thompson Ramo WooldriZge 
2355 Euclid Avenue 
Cleveland 17, Ohio 
Attn: M r .  Vietor Kovacik 

Unified Science Associates, Inc. 
826 S. Arroyo Parkway 
Pasadena, California 
Attn: D r  . Sam Naiditch 

Union Carbide Corporation 
12900 Snow Road 
Parma, Ohio 
Attn: D r .  George E. mans 

University of California 
Space Science Laboratory 
Berkeley 4, California 
A t t n :  Prof . Chmles W. Tobias 

University of Pennsylvania 
Philadelphia 4, Pennsylvania 
Attn: Dr. Manfred A l t m a n  
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Western Reserve University 
Cleveland, Ohio 
Attn: Prof. Ernest Yeager 

Yardney Electric Corp. 
New York, New York 
Attn: Dr. Paul Howard 

Lockheed Missiles & Space Co. 
3251Hanover St .  
Palo Alto, California 
Attn: D r .  George B. Adams 

M r .  B. S. Baker 
Ins t i tu te  of Gas Technology 
State & 34th Streets 
Chicago 16, I l l i no i s  

M r .  Peter D. Richman 
President 
Chem Cell Inc. 
3 Central Ave. 
E a s t  Newark, New Jersey 07029 
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